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Abstract—Federated learning (FL) methods face major chal-
lenges including communication bottleneck, data heterogeneity
and security concerns in edge IoT scenarios. In this paper,
inspired by the success of biological intelligence (BI) of gregarious
organisms, we propose a novel edge learning approach for swarm
IoT, called communication-efficient and Byzantine-robust dis-
tributed swarm learning (CB-DSL), through a holistic integration
of AI-enabled stochastic gradient descent and BI-enabled particle
swarm optimization. To deal with non-independent and identi-
cally distributed (non-i.i.d.) data issues and Byzantine attacks, a
very small amount of global data samples are introduced in CB-
DSL and shared among IoT workers, which not only alleviates the
local data heterogeneity effectively but also enables to fully utilize
the exploration-exploitation mechanism of swarm intelligence.
Further, we provide convergence analysis to theoretically demon-
strate that the proposed CB-DSL is superior to the standard FL
with better convergence behavior. In addition, to measure the
effectiveness of the introduction of the globally shared dataset, we
also evaluate the model divergence by deriving its upper bound.
Numerical results verify that the proposed CB-DSL outperforms
the existing benchmarks in terms of faster convergence speed,
higher convergent accuracy, lower communication cost, and
better robustness against non-i.i.d. data and Byzantine attacks1.

Index Terms—Distributed swarm learning, federated learning,
particle swarm optimization, non-i.i.d. data, convergence analysis,
model divergence analysis.

I. INTRODUCTION

Federated learning (FL) has recently attracted great attention

and resulted in fruitful attempts for learning-based applications

among multiple distributed workers such as personal mobile

phones, which allows distributed learning from local data

without raw data exchange [1]–[3]. Standard FL methods are

originally designed for ideal learning settings and wireless

environments, which however face several challenges when

being adopted for distributed learning among massive edge

Internet of Things (IoT) devices that are usually equipped

with limited capability and resources [4], [5]. As the number

of model parameters goes very large in deep neural networks,

transmission of all the local model updates in FL between IoT

devices (working as local workers) and the parameter server

(PS) incurs high communication overhead. Further, stochastic

gradient descent (SGD) is widely applied for model training

in FL [6], where independent and identically distributed (i.i.d.)

data samples are assumed at local workers and transmission is

assumed error-free in order to ensure unbiased estimates and

good empirical performances [7], [8]. However, in edge IoT

1Our code can be found at:https://github.com/fuanxiyin/CB-DSL.git.

scenarios, local training data samples at different IoT work-

ers turn to be statistically heterogeneous worker-by-worker,

giving rise to the non-i.i.d. data issue that may considerably

degrades the learning performance of standard FL methods,

e.g., Federated Averaging (FedAvg) [9]. In addition, gradient-

based algorithms are subject to local optimum traps in solving

non-convex problems [10], [11]. This issue is aggravated

in distributed settings, especially when local workers only

collect small-volume data. Last but not the least, standard FL

performs well in attack-free network settings, but is vulnerable

to Byzantine attacks that may exist in practical edge network-

s [12]–[15].

Although some of the aforementioned challenges have

been recently investigated in the literature of FL for edge

networks and IoT applications [16]–[20], they mainly focus

on the modification and customization of the standard FL

techniques, which however largely neglect some important

and unique characteristics of IoT devices in edge networks.

Such unique characteristics include the large population of

devices for many IoT applications, limited communication

bandwidth available in edge networks, and non-i.i.d. local data

with small data volume at individual IoT workers. By ignoring

these characteristics, existing efforts on edge learning fail to

consider these limitations in the learning algorithm design

for edge IoT systems, which results in learning performance

degradation of FL applied to practical IoT edge network-

s. On the other hand, biological organisms in nature have

demonstrated swarm intelligence with superior strength in

collectively processing information, making decisions, dealing

with uncertainties, and recovering from errors and failures,

even though they are individually weak. All these attributes of

biological intelligence (BI) are desired by IoT edge learning

systems. Notably, bio-inspired swarm optimization techniques

are good at collaboratively finding the globally optimal solu-

tions to complex optimization problems thanks to their built-

in exploration-exploitation mechanism in swarms, but their

convergence speed is typically slow [21].

Motivated to bridge these gaps, this paper leverages both AI

and BI to develop a communication-efficient and Byzantine-

robust distributed swarm learning (CB-DSL) approach, by

reformulating the bio-inspired particle swarm optimization

(PSO) problem as a distributed learning problem with non-

i.i.d. local data and in the presence of malicious attacks. For

non-convex problems, by taking advantage of the exploration-

exploitation mechanism of PSO [22], our CB-DSL solutions

have an increased chance to jump out of local optimum traps



via swarm intelligence. For the communication bottleneck

challenge, our CB-DSL only requires the best worker having

the minimum loss function value to upload its local model to

the PS, which thus dramatically reduces the communication

overhead and energy consumption in edge networks. To alle-

viate the non-i.i.d. data issue, we propose to introduce a small-

volume global dataset that is shared among all local workers

for dual purposes. A part of this globally shared dataset is

used for training, whose effectiveness in relieving the non-i.i.d.

problem is evaluated through the model divergence analysis.

The other part of the global dataset is used to calculate the fair-

value loss for scoring the local models. It helps to identify the

per-worker best model for best worker selection, and enables

to verify the uploaded local model by which the PS can screen

Byzantine attackers. Our main contributions are summarized

as follows.

• We propose a new CB-DSL framework by developing a

holistic integration of AI-driven SGD and BI-driven PSO,

to effectively handle the high communication costs, non-

i.i.d. issues, non-convex problems and Byzantine attacks

without sacrifice convergence speed, which cannot be

achieved by SGD or PSO alone. CB-DSL offers a new

paradigm of efficient and robust edge learning tailored

for massive smart IoT devices in edge networks.

• From the theoretical point of view, we are the first one

to systematically analyze the combination of FL and

PSO, by deriving a closed-form expression to quantify

the expected convergence rate achieved by our CB-DSL.

Our analytical results not only reflect the impact of

different settings and parameters of our CB-DSL on the

performance of edge learning, but also indicate that our

CB-DSL outperforms the standard FL methods such as

FedAvg in terms of better convergence rate.

• We further investigate the non-i.i.d. data issue by provid-

ing a model divergence analysis to evaluate how a glob-

ally shared dataset improves the learning performance

of our CB-DSL. Our theoretical result reveals that the

model divergence is subject to an upper bound, which is

decided by the earth mover’s distance (EMD) between

the data distribution at local workers and the population

distribution for the whole datasets.

• Through comprehensive experiments, we test the pro-

posed CB-DSL approach in solving image classification

problems by using the MNIST dataset. Simulation results

show that our CB-DSL outperforms the benchmark meth-

ods in terms of achieving the highest testing accuracy

with the fastest convergence under non-i.i.d. cases and

even in the presence of Byzantine attacks.

II. DISTRIBUTED SWARM LEARNING

Consider a distributed learning model with one PS and U
IoT workers, where U is very large but each worker has data
of small volume in edge IoT scenarios. Assume that each
worker has Ki data samples in its local dataset Di, with
|Di| = Ki, and i = 1, . . . , U . Denote (xi,k, yi,k) as the k-
th data sample of the i-th local worker. Let f(w;xi,k, yi,k)
represent the loss function associated with each data sample

(xi,k, yi,k), where w = [w1, . . . , wD] of size D consists of the
parameters of a common learning model. The corresponding
population loss function for the whole datasets D and that for
the local dataset Di of the i-th worker are denoted as F (w) :=
ED[f(w;xi,k, yi,k)] and Fi(w) := EDi [f(w;xi,k, yi,k)], re-
spectively, where D =

�
i Di. For distributed learning, local

workers collaboratively learn w by minimizing

P1: w∗
i = argmin

wi

Fi(wi), s.t., wi = z, ∀i, (1)

where z is an auxiliary variable to enforce consensus through

collaboration among distributed local workers.

A. Federated Learning
For standard FL designed in ideal learning settings and

network environments, the minimization of Fi(w) is typically
carried out by the stochastic gradient descent (SGD) algorithm
[6], where local workers iteratively update their local models
in FL as

wi,t+1 = wi,t − α
U

�U

j=1
∇Fj(wt;xj,k, yj,k), (2)

where α is the learning rate and ∇Fj(wt;xj,k, yj,k) =

EDj

��
Bj

∇f(wt;xj,k,yj,k)

|Bj |

�
is the local gradient computed

at each local worker using its randomly selected mini-batch

Bj ⊂ Dj with the mini-batch size |Bj |.
Note that (2) is the mathematical illustration of the itera-

tive local model update, whereas the second term of global

gradient averaging therein is typically implemented at the PS

and then sent back to local workers. Hence, communications

take place in every iteration until convergence, during which

the communication overhead to acquire the sum of all U local

gradients in (2) would be huge especially when U and D
are large. Moreover, for complicated non-convex problems,

distributed gradient-based FL solutions may converge to unde-

sired local optima and there is unfortunately a lack of effective

mechanisms to escape these traps.

B. Particle Swarm Optimization

As a bio-inspired algorithm, PSO is a stochastic optimiza-

tion approach based on the movement of particles (workers)

and the collaboration of swarms to iteratively and coopera-

tively search for an optimal solution to general optimization

problems [22], [23]. The loss function in PSO is assumed to be

globally common to all particles, i.e., Fi(·) = F (·), ∀i in the

problem P1 in (1). This is however not the case in distributed

leaning where Fi(·) is data-dependent and different worker-

by-worker, which will be explained in the next subsection.
In PSO, a swarm consists of a large set of particles,

i = 1, 2..., U . At the current iteration, the position wi,t of
each particle i presents a possible solution to the problem,
and meanwhile the velocity vi,t of each particle i denotes
the updating direction for the next step. To find the globally
optimal value of F (·), particles collaborate with each other to
update their velocities and positions in an iterative manner

vi,t+1 = c0vi,t + c1(w
p
i,t −wi,t) + c2(w

g
t −wi,t), (3)

wi,t+1 = wi,t + vi,t+1, (4)

where the velocity is updated as a combination of three sub-

directions: inertia vi,t of the previous updating direction,



individual direction towards each particle’s own historical best

parameter wp
i,t=argminτ=1,···,t F (wi,τ ), and social direction

towards the globally best parameter found by the entire swarm

wg
t=argmini=1,···,U F (wp

i,t). The inertia weight c0 is a pos-

itive number, while c1 and c2 are positive and random (say,

uniformly distributed as c1∼U(0, δc1), and c2∼U(0, δc2)) for

stochastic optimization.

C. Communication-efficient and Byzantine-robust Distributed
Swarm Learning

A major challenge from optimization problems to learning

problems with distributed data is the lack of a common

F (·) for global assessment, which however becomes Fi(·;Di)
dependent on local dataset Di in distributed learning. Facing

this challenge, we first introduce a very small amount of

global dataset2: DG = DG
tr ∪ DG

sc to be shared by all

workers, and then propose a novel edge learning framework

called communication-efficient and Byzantine-robust distribut-

ed swarm learning (CB-DSL). The CB-DSL algorithm is

implemented in Algorithm 1, and schematically illustrated

through the following iterative model updating steps.
At the local workers i = 1, · · · , U , the model parameters

are updated in a way of integrating BI-enabled PSO with AI-
enabled SGD

wi,t+1 = wi,t + c0vi,t + c1(w
p
i,t −wi,t) + c2(w

g
t −wi,t)

� �� �

BI

−α∇Fi(wi,t;Di ∪DG
tr)

� �� �

AI

, (5)

where DG
tr is a part of DG and used for training to relieve the

non-i.i.d. problem.
Then, the local workers calculate their own historical min-

imum loss function values and maintain their own historical
best model parameters

{F p
i,t+1,w

p
i,t+1} = arg min

τ=1,··· ,t+1
Fi(wi,τ ,D

G
sc), (6)

where DG
sc is the other part of DG and used to provide fair-

value scores of local models for best-worker selection by

assessing the per-worker F p
i,t+1. Then, all workers report their

F p
i,t+1 to the PS.

Comparing the received {F p
i,t+1}i from all local workers,

the PS selects the best worker i�t+1 with the global optimum

function value

{i�t+1, F
g
t+1} = arg min

i=1,··· ,U
F p
i,t+1. (7)

If F g
t+1 < F g

t , then the worker with the selected index i�t+1 is

invited to upload its wp
i�
t+1

,t+1 to the PS as the globally best

model parameter wg
t+1 = wp

i�
t+1

,t+1. If F g
t+1 ≥ F g

t , then no

worker is invited to upload local model parameter and the PS

simply maintains the globally best model parameter and the

2For the implementation point of view, a small amount (e.g., 1% of all
datasets is adequate as used in our simulations) of globally shared dataset
can be generated by a generative adversarial network module for keeping the
privacy of workers’ own local data [24], which can be either pre-stored in the
IoT devices or broadcasted from the PS to all the local workers. The required
resources in sharing and local storage are quite low.

globally best loss function value from the previous iteration

as wg
t+1 = wg

t and F g
t+1 = F g

t .

Upon receiving wp
i�
t+1

,t+1 from the invited worker, the PS

further uses DG
sc to verify the reported model parameter.

If F (wp
i�
t+1

,t+1,D
G
sc) �= F g

t+1, then a Byzantine attack is

identified and the attacker is filtered out; the PS will inquire

the next best local worker, until confirmed.

Communication Efficiency. Note that our CB-DSL requires

U workers to share their function value F p
i,t+1 which is only

a scalar, and then invites only one local worker with the

global minimum loss function value calculated using DG
sc to

report its model parameter to the PS. Thus, our CB-DSL can

dramatically reduce the overall communication overhead and

energy consumption in edge networks.

Byzantine Robustness. In the process of collecting F p
i,t+1’s

from local workers, a malicious worker may send a fake F̄ p
i,t+1

(< F p
i,t+1) to fool the PS to invite the attacker to upload

its fake model parameter as the global optimum, which will

undermine edge learning. Thanks to DG
sc in our CB-DSL, it

enables the PS to screen and remove the potential Byzantine

attackers, resulting our Byzantine-robust CB-DSL.

Algorithm 1 CB-DSL

Initialization:
wp

i,0 = wi,0, F p
i,0 = Fi(wi,0,D

G
sc), ∀i;

1: for each iteration t = 1 : T do
2: at the local workers:
3: update the local model parameter wi,t+1 via (5);

4: calculate the historical minimum loss function value

F p
i,t+1 and maintain the corresponding historical best

model parameter wp
i,t+1 via (6);

5: send the scalar function value F p
i,t+1 to the PS;

6: only the invited local worker sends wp
i,t+1 to the PS;

7: at the PS:
8: compare the received F p

i,t+1’s, select the best worker

i�t+1 and identify its function value as F g
t+1 via (7);

9: if F g
t+1 < F g

t , then invite the selected worker i�t+1 to

upload its model parameter as the globally best model

parameter wg
t+1 = wp

i�
t+1

,t+1;

10: else, no worker is invited and maintain the globally

best model parameter and function value from the

previous iteration as wg
t+1 = wg

t and F g
t+1 = F g

t ;

11: given wp
i�
t+1

,t+1 received from the invited worker,

verify F (wp
i�
t+1

,t+1,D
G
sc) == F g

t+1;

12: if an attacker is identified by F (wp
i�
t+1

,t+1,D
G
sc) �=

F g
t+1, remove it and repeat line 8 until a legitimate

worker is selected.

13: end for

III. CONVERGENCE ANALYSIS

In this section, we first make some definitions and assump-

tions for convergence analysis. With these preliminaries, the

convergence behavior of our CB-DSL approach is theoretically

evaluated by deriving an upper bound of the convergence rate.



A. Assumption and Definition
Assumption 1. (Lipschitz continuity, smoothness): The gradi-
ent ∇Fi(w) of the loss function Fi(w) at node i is uniformly
Lipschitz continuous with respect to w, that is,

‖∇Fi(wi,t+1)−∇Fi(wi,t)‖ ≤ L‖wi,t+1 −wi,t‖, ∀i, t, (8)

where L is a positive constant, referred as the Lipschitz

constant for the loss function Fi(·) [3].

To facilitate analyses, we rewrite wp
i,t and wg

t in (5) as

wp
i,t = wi,t−1 + vp

i,t, (9)

wg
t = wi,t−1 + vg

t , (10)

where vp
i,t and vg

t denote the per-worker and globally optimal

velocities currently used at the i-th worker.
Then, the DSL velocity update vi,t+1 = BI + AI =

wi,t+1 −wi,t in (5) can be rewritten as

vi,t+1 = c0vi,t + c1(v
p
i,t − (wi,t −wi,t−1))

+ c2(v
g
t − (wi,t −wi,t−1))− α∇Fi(wi,t)

= c0vi,t + c1(v
p
i,t − vi,t) + c2(v

g
t − vi,t)− α∇Fi(wi,t)

= (c0 − c1 − c2)vi,t + c1v
p
i,t + c2v

g
t − α∇Fi(wi,t), (11)

where we replace ∇Fi(wi,t;Di∪DG
tr) by ∇Fi(wi,t) hereafter

for symbol simplicity.
We use θi,t, θ

p
i,t, and θgt to denote the angles between vi,t

and −∇Fi(wi,t), between vp
i,t and −∇Fi(wi,t), and between

vg
t and −∇Fi(wi,t), for any i and t, respectively. Then we

have cos θi,t � 〈vi,t,−∇Fi(wi,t)〉
‖vi,t‖‖∇Fi(wi,t)‖ , cos θpi,t �

〈vp
i,t

,−∇Fi(wi,t)〉
‖vp

i,t
‖‖∇Fi(wi,t)‖ ,

cos θgt � 〈vg
t ,−∇Fi(wi,t)〉

‖vg
t ‖‖∇Fi(wi,t)‖ , ∀i, t.

We further assume that the above cosine-similarity measures

are bounded, whose lower and upper bounds are denoted as

q ≤ cos θi,t ≤ q, qp ≤ cos θpi,t ≤ qp, qg ≤ cos θgt ≤ qg , u ≤
‖vi,t‖

‖∇Fi(wi,t)‖ ≤ u, up ≤ ‖vp
i,t

‖
‖∇Fi(wi,t)‖ ≤ up, ug ≤ ‖vg

t ‖
‖∇Fi(wi,t)‖ ≤

ug, ∀i, t.
B. Convergence Bound

With the assumptions and definitions presented in Subsec-

tion IV.A, the convergence errors of the CB-DSL algorithm

are bounded by the following Theorem 1.

Theorem 1. For T communication rounds, the expected
convergence rate at each worker in CB-DSL is bounded by

E

�
T�

t=1

‖∇Fi(wi,t)‖2
T

�
≤ F (wi,0)− F (w∗)

TΦE
, ∀i, (12)

where ΦE = α − 2c0−δc1−δc2
2 qu − δc1

2 upqp − δc2
2 ugqg −

2L((c20 − δc1c0 − δc2c0 +
δ2c1
3 +

δ2c2
3 +

δc1δc2
2 )u2 +

δ2c1
3 (up)2 +

δ2c2
3 (ug)2 + α2).

Proof: Please refer to our journal version [25].

Remark 1. When c0, δc1 , and δc2 are all set to be 0, we

have ΦE = α − 2Lα2 in (12), and CB-DSL degenerates

into FedAvg. As ΦE − (α − 2Lα2) =
δc1+δc2−2c0

2 qu +

2L((δc1c0 + δc2c0 − c20 −
δ2c1
3 − δ2c2

3 − δc1δc2
2 )u2 − δ2c1

3 (up)2 −
δ2c2
3 (ug)2)− δc1

2 upqp− δc2
2 ugqg > 0, CB-DSL converges faster

than FedAvg.

IV. MODEL DIVERGENCE ANALYSIS FOR THE CASE OF

NON-I.I.D. DATA

Consider a C-class classification problem defined over a
compact space X and a label space Y . The k-th data point
(xi,k, yi,k) on the i-th local worker distributes over X ×Y fol-
lowing the distribution pi. For the purpose of model divergence
analysis, suppose a genie worker who has the population data
that reflect the population distribution p of all local workers
that may differ from pi. The genie worker uses such knowledge
of p to search for the globally optimal solution to the learning
model, which serves as the reference to calibrate the model
divergence due to the distributed non-i.i.d. data. Then the o-
riginal population loss function F (w) := ED[f(w;xi,k, yi,k)]
can be rewritten as

F (w) =

C�
c=1

p(y = c)Ex|y=c[fc(x,w)], (13)

where fc denotes the probability for the c-th class, c ∈ {1, C}.
Then, the learning problem at the genie worker can be

formulated as

P2: w∗ = argmin
w

C�
c=1

p(y = c)Ex|y=c[fc(x,w)]. (14)

By solving P2, the model obtained at the genie worker plays
as the globally optimal position in each communication round
of CB-DSL. Then according to (11), the velocity at the genie
worker in the (t+1)-th communication round is updated via

vg
t+1 = c0v

g
t − α∇F (wg

t ). (15)

The model parameter at the genie worker in the (t + 1)-th
communication round is updated as

wg
t+1 = wg

t + vg
t+1. (16)

Given (5) and (16), the model divergence between the i-th
local worker and the genie worker is defined as

model divergence =
‖wi,t+1 −wg

t+1‖
‖wg

t+1‖
. (17)

Next, we provide Theorem 2 to evaluate the model diver-

gence by deriving its upper bound theoretically.

Theorem 2. Under the assumption that ∇Ex|y=c[fc(x,w)] is
Lc-Lipschitz for each class c∈{1, C}, we have the following
inequality for the model divergence as

‖wi,t+1 −wg
t+1‖ ≤ βt+1‖wi,0 −wg

0‖

+ |c0 − c1 − c2|
t�

j=0

βt−j‖vi,j − vg
j ‖

+ α

C�
c=1

‖pi(y = c)− p(y = c)‖
t�

j=0

fmax(w
g
j ), (18)

where β = 1 + α
�C

c=1 pi(y = c)Lc and fmax(w
g
j ) =

max{∇Ex|y=c[fc(x,w
g
j )]}Cc=1.

Proof: Please refer to our journal version [25].

Remark 2. In (18), the initial model divergence (first term) and

the velocity divergence (second term) after (t+ 1) communi-

cation rounds are iteratively amplified by β. Since β > 1,

if different local workers start from different initial model



parameters in the standard FL, then the model divergence will

still be enlarged, even though the local workers have i.i.d. data.

Remark 3. In (18), the third term
�C

c=1 ‖pi(y = c) − p(y =
c)‖ is the EMD between the data distribution on the i-th
local worker and the population distribution [26], when the

distance metric is defined as ‖pi(y = c) − p(y = c)‖. The

impact of EMD is affected by the learning rate α, the number

of communication rounds t, and the class-wise maximum

gradient fmax(wj).

V. EXPERIMENTAL RESULTS

This section demonstrates that our CB-DSL outperforms

the benchmark methods, with better learning performance and

faster convergence speed, on non-i.i.d. settings, even in the

presence of Byzantine attacks.

A. System and Dataset Setting

We perform empirical simulations by conducting a

handwritten-digit classification task based on the widely-used

MNIST dataset3. We set the total number of local workers

to be U = 50. To build the non-i.i.d. data setting upon the

MNIST dataset, we first sort all the 60000 training samples

based on the classification labels. Then we divide the 60000

training samples into 200 shards, each of which consists

300 samples, that are highly non-i.i.d. shard by shard [6].

We randomly allocate two shards to each local worker. The

globally shared scoring dataset DG
sc consists of 2000 data

samples, and the globally shared training dataset DG
tr consists

of 600 data samples.

B. Different Approaches

We compare the proposed CB-DSL with FedAvg [6], given

either i.i.d. or non-i.i.d. data, for different cases of globally

shared dataset, including: (1) FedAvg without any globally
shared dataset DG. (2) CB-DSL without any globally shared
dataset DG: the local workers use their own local dataset

to calculate F p
i,t. (3) CB-DSL with a globally shared dataset

for scoring DG
sc: the local workers use the globally shared

scoring dataset to calculate F p
i,t in CB-DSL. (4) FedAvg with a

globally shared dataset for training DG
tr: the local workers use

both their own local dataset and the globally shared training

dataset to train their local models in standard FedAvg [6]. (5)

CB-DSL with a globally shared dataset for both training DG
tr

and scoring DG
sc: the local workers use both their own local

dataset and the globally shared training dataset to train their

local models and then use the globally shared scoring dataset

to calculate F p
i,t in CB-DSL.

C. Evaluation and Comparison

In Fig. 1, when CB-DSL runs without DG
tr, it cannot work

properly in the non-i.i.d. setting. This is because CB-DSL

hinges on single best worker selection which however may

not hold the optimum model at all. Using DG
sc can slightly

improve the learning performance of CB-DSL.When both a

3http://yann.lecun.com/exdb/mnist/

globally shared training dataset and scoring dataset are used as

DG = DG
tr ∪DG

sc, CB-DSL turns to outperform FedAvg. This

is because DG
tr helps to relieve the local data heterogeneity

issue by making the local datasets to become more i.i.d.,

which decreases the EMD between the data distributions on

local workers and the population distribution as revealed by

our model divergence analysis in Section V. Besides, the

improvement on learning accuracy also indicates that our CB-

DSL solutions have an increased chance to jump out of local

optimum traps via the exploration-exploitation mechanism.

In Fig. 2, we provide the performance comparison in the

presence of the Byzantine attack. It is obvious that even

only one Byzantine attacker can fail FedAvg and CB-DSL

without DG. On the other hand, the CB-DSL with DG can

effectively defend the Byzantine attack, because the globally

shared dataset for scoring DG
sc can help identify and screen

out the Byzantine attacker as explained in Algorithm 1.

In Fig. 3, we further evaluate the weight divergences effects

under the non-i.i.d. setting. As the communication rounds

increase, the weight divergences of CB-DSL with or without

DG first increase and then flatten out after several commu-

nication rounds. The final steady-state weight divergence of

the CB-DSL with DG is much less than that of the CB-DSL

without DG, as depicted by the gap between the two curves in

Fig. 3. Such a nontrivial gap confirms the theoretical results

of Theorem 2: (1) the model divergence will be enlarged

as the communication rounds increase (this is because that

the initial model divergence is iteratively amplified by β, as

explained in Remark 2); (2) the use of DG can reduce the

weight divergence (this is because that the use of DG decreases

the EMD between the data distributions on local workers and

the population distribution, as explained in Remark 3).

Note that only one local worker is selected and invited to

send its model parameter to the PS in CB-DSL, while all

workers need to send their model parameters to the PS in

FedAvg. Therefore, the communication cost consumed in CB-

DSL is only 1
U of that in FedAvg. In addition, we can see from

Fig. 1 that our CB-DSL with DG uses fewer communication

rounds than FedAvg to achieve the same learning accuracy.

As a result, our CB-DSL is communication-efficient with less

communication rounds and less communication overhead per

round in practical applications.

VI. CONCLUSION

This work studies a novel communication-efficient and

Byzantine-robust distributed swarm learning (CB-DSL) ap-

proach for edge IoT systems, as a holistic integration of the

AI-enabled SGD and the BI-enabled PSO. We propose to

introduce a globally shared dataset to overcome the major

challenging issues in edge learning including: the partially

observability of loss function in distributed learning problems,

the non-i.i.d. local data issues, and the potential Byzantine

attacks. We provide theoretical analysis of the convergence

behavior of the proposed CB-DSL, which indicates that our

method can achieve better learning performance than existing

distributed learning methods. Further, we provide the model
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Fig. 1: The performance comparison under the
non-i.i.d. setting.
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Fig. 2: The performance comparison with a
Byzantine attacker.
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Fig. 3: The comparison of the weight
divergences under the non-i.i.d. setting.

divergence evaluation of the proposed CB-DSL in the non-

i.i.d. settings, which quantifies how a globally shared dataset

can improve the learning performance of the CB-DSL. Sim-

ulation results verify that our proposed CB-DSL solution can

improve learning performance in non-i.i.d. settings. Mean-

while, the communication saving by the CB-DSL inherits

the advantage of the bio-inspired PSO techniques with much

reduced communication cost than standard FedAvg.
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