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Abstract—In this paper, we study a communication-efficient
distributed learning scheme through a holistic integration of
federated learning (FL) and particle swarm optimization, called
DSL, which is suitable for the implementation of intelligent IoT
applications. Since only one selected optimum from all local
devices need to report its local model updates to the param-
eter server, the communication cost of DSL is much reduced
compared to its counterpart of standard FL. However, the DSL
is vulnerable to adversarial attackers. To achieve Byzantine-
resilient DSL, we propose to introduce a shared dataset for
scoring local updates to screen attackers. We further provide the
convergence analysis to theoretically demonstrate that CB-DSL is
superior than the standard FL. Experiment results show that the
learning performance of our proposed CB-DSL outperforms the
existing benchmarks with only a small amount of globally shared
data. It enjoys higher robustness against Byzantine attacks than
the vanilla DSL, and has better communication efficiency than
the standard FL1.

Index Terms—Federated learning, particle swarm optimiza-
tion, communication efficiency, robustness, convergence analysis

I. INTRODUCTION

With the vigorous development of the Internet of Things

(IoT), edge devices have emerged as the main force of com-

puting resources to fuel the development of wireless networks

beyond 5G (B5G). A tremendous amount of valuable data

collected and stored on these edge devices and the advanced

machine learning technologies jointly drive the latest trend

in artificial intelligence (AI) at the B5G network edge (edge

AI) [1]. Enabling edge AI requires the distributed data can

be rapidly and securely access. From either communication,

security and privacy, regulatory or economic point of view,

it is impractical for a central server to train a satisfactory

learning model by collecting raw data from edge devices.

Fortunately, federated learning (FL) provides a way for various

IoT applications over edge devices in B5G IoT networks,

which allows edge learning from distributed local data without

compromising their privacy [2]–[5]. In FL, edge devices (local

workers) periodically upload their locally trained models to

an edge server (parameter server), where the local models

are aggregated to update a global model. In this way, FL

enables communication-efficient and privacy-preserving dis-

tributed learning without raw data exchange.

However, there still exist some remaining challenges in

FL especially in its applications for IoT edge networks.

For example, when the number of the model parameters is

1Our code can be found at:https://github.com/fuanxiyin/CB-DSL.git.

huge, transmission of their updates between edge devices and

the parameter server (PS) appears as a major bottleneck to

communication-constrained FL implemented over IoT-based

edge networks [4], [6]. Besides, gradient descent algorithms

are easy to fall into local optimums in solving non-convex

problems [7], given the non-convex nature of the cost function-

s. Last but not the least, FL is vulnerable to Byzantine attacks,

meaning that some local workers may behave completely

arbitrarily to disrupt cooperative tasks in FL [8]–[10].

To jointly overcome all, we leverage the biological in-

telligence (BI) and propose a communication-efficient and

Byzantine-resilient FL scheme (CB-DSL) by using particle

swarm optimization. For the communication challenge, our

proposed CB-DSL only requires the worker with the optimal

local model to upload its local updates to the PS, which thus

reduce communication costs dramatically. For the non-convex

problems, CB-DSL takes the advantages of the exploration-

and-exploitation mechanism, which enables FL to jump out

of the local optimal trap [11], [12]. Since only one worker

is selected to upload the optimal local model to the PS, the

selected local worker may be a Byzantine attacker to upload

an adversarial model. For Byzantine attack issues, a globally

shared dataset is used as a globally scoring dataset to test the

uploaded optimal local model, and the PS can screen and kick

out potential Byzantine attackers if the scoring accuracy at

the PS does not match what they reported. Our proposed CB-

DSL establishes a new paradigm of efficient and robust edge

intelligence through a holistic integration of AI and BI. Our

main contributions are summarized as follows.

• We propose a CB-DSL approach to jointly handle

the high communication cost, non-convex problem and

Byzantine attacks in existing FL. In CB-DSL, local mod-

els are evaluated by a globally scoring dataset to select

the optimal one. Then only one optimal local model needs

to be uploaded to the PS rather than all the local models.

Further, the selected optimal local model is verified by

the PS to screen potential Byzantine attackers.

• From theoretical point of view, we derive the closed-

form expression of the expected convergence rate for our

CB-DSL. Our theoretical analysis reflects the impact of

different system parameters on the performance of FL

methods, and also indicates that our CB-DSL outperforms

the standard FL method such as FedAvg.

• We evaluate the proposed CB-DSL in solving image

classification problems by using the MNIST dataset.



Simulation results show that our proposed CB-DSL out-

performs the benchmark methods in terms of higher

testing accuracy and robustness.

II. RELATED WORK

Various methods has been proposed in addressing the

communication challenges of FL, such as sparsification [13],

quantization [14] and infrequent uploading of local updates

[15]–[17]. Other than these strategies designed for digital

transmission, another promising solution from an aspect of

transmissions is analog aggregation based FL, called FL over

the air, which exploits the waveform superposition property

of the wireless medium to support simultaneous transmission

by all the devices [2], [4], [6], [8], [10], [18]. However,

all the aforementioned methods require all participating local

workers to upload their local updates to the PS, which results

in tremendous communication costs in edge networks with

massive smart IoT devices. In contrast, we aim to upload

only one optimal local model to significantly save the overall

communication cost of the massive-IoT edge networks.

Motivated by taking advantage of the swarm biological

intelligence of animal flocks, PSO has been developed to solve

optimization problems without the assumptions of convexity

and differentiability [11], [12]. Recently, a few research efforts

have been found in applying PSO algorithms to improve ma-

chine learning performance. For example, the authors propose

to apply PSO to find the optimal hyperparameters for improv-

ing the learning performance of FL in [19]. The mentioned

work does not consider to combine the PSO and FL from the

algorithm perspective to leverage AI-enabled stochastic gradi-

ent descent and BI-enabled particle swarm optimization. To fill

such technical gaps, our work proposes a new communication-

efficient and Byzantine-resilient FL solution (CB-DSL) with

rigorous convergence analysis to demonstrate the advantage of

the holistic integration of AI and BI.

III. CB-DSL

In this section, we will start with the models and formu-

lations of standard FL and PSO techniques. Then, we will

introduce our communication-efficient and Byzantine-resilient

CB-DSL algorithm design.

A. Federated Learning

Consider a distributed computation model with one pa-

rameter server (PS) and U local workers. Each local worker

stores K data samples in its dataset Di. Denote (xi,k, yi,k)
as the k-th data of the i-th local worker. Let f(w;xi,k, yi,k)
represent the loss function associated with each data point

(xi,k, yi,k), where w = [w1, . . . , wD] of size D consists

of the model parameters. The corresponding population loss

function is expressed as F (w) := ED[f(w;xi,k, yi,k)], where

D =
�

i Di. The PS and local workers collaboratively learn

the model parameter vector w by minimizing

P1: w∗ = argmin
w

F (w). (1)

The minimization of F (w) is typically carried out through

the stochastic gradient descent (SGD) algorithm. At the PS,

the model parameter wt at the t iteration is updated as

(Model updating) wt = wt−1 − α

�U
i=1 gi,t

U
, (2)

where α is the learning rate and gi,t =

∇Fi(wt−1;xi,k, yi,k) = EDi
[

�
Bi

∇f(wt−1;xi,k,yi,k)

|Bi| ] is

the local gradient computed at the i-th local worker using its

randomly selected mini-batch Bi ⊂ Di with the mini-batch

size |Bi|. The communication overhead for the PS to acquire

the sum of local gradients in (2) from local workers in each

iteration would be huge especially when D is large.

B. PSO

PSO is a probabilistic approach to solve optimization prob-

lem [11], [12], e.g., the problem P1. In PSO, the swarm

consists of a set of particles, i = 1, 2..., U . At the t-th iteration,

a particle i holds a particle best solution to the problem

represented by a position wp
i,t in a given search space, and has

a updating direction represented by a speed vi,t for the next

step. To find the global optimal value, particles communicate

with each other to share their own wp
i,t variable step-by-step.

In this way, each particle is able to set a common wg
t (global

best) variable from the shared wp
i,t values that leads to the

optimal value of the cost function at the current iteration:

wg
t = argmini=1,2,...,U F (wp

i,t). The parameters wg
t and wp

i,t

are used for particles to move on to the next step as

vi,t+1 = c0vi,t + c1(w
p
i,t −wi,t) + c2(w

g
t −wi,t), (3)

wi,t+1 = wi,t + vi,t+1, (4)

where c0 is a positive constant representing the inertia weight,

c1, and c2 are two random acceleration factors for the particle

optimum and the global optimum, which follow the continuous

uniform distributions U(0, δc1) and U(0, δc2), respectively.

C. CB-DSL

In CB-DSL, each particle, e.g., i, initiates its starting

position wp
i,0 and speed vi,0 for the next step. Given wp

i,0

and its dataset Di, each particle calculates its particle cost

Fi(w
p
i,0;Di) as its particle optimum F p

i,0. At the t-th com-

munication round, each particle sends its particle optimum

F p
i,t to the PS, and the PS compares all the received F p

i,t’s

to select the global optimum by F g
t = min{F p

i,t}Ui . Then the

PS broadcasts the index ipt of the selected particle and the

selected particle broadcasts its position wp
i,t as the current

global optimal position wg
t . Given the received wg

t and its

own wp
i,t, each particle calculates its local gradient ∇Fi(wi,t)

and updates its position and speed as

vi,t+1 = c0vi,t + c1(w
p
i,t −wi,t) + c2(w

g
t −wi,t)

+ α∇Fi(wi,t), (5)

wi,t+1 = wi,t − vi,t+1. (6)

Then each particle updates its particle optimum F p
i,t+1 by

F p
i,t+1 = min{F p

i,t, Fi(w
p
i,t+1;Di)}, which is sent to the PS



for the next iteration. Meanwhile, each particle also updates

its particle optimal position as wp
i,t+1 = wi,t+1 if F p

i,t >
Fi(w

p
i,t+1;Di); or wp

i,t+1 = wp
i,t otherwise. The iterations

are implemented between the PS and all the particles until

convergence.

Since only the model parameter from the local worker with

the global optimum score is requested to be reported to the

PS, the communication cost at each communication round is

reduced significantly in CB-DSL, compared with that required

by standard FL. Besides, introducing a speed term into SGD,

both the updates of the speed and the gradient in (5) contribute

to seek an optimum for individual local workers, which leads

to an improvement of SGD. However, the process of collecting

F p
i,t’s is inherently vulnerable to Byzantine attacks, i.e., a local

worker may perform Byzantine attack to send a fake F p
i,t

to fool the PS to select its model parameter as the global

optimum, which would destroy FL. To solve this problem, we

propose to take advantage of a globally shared dataset DG
sc to

screen Byzantine attackers.

Specifically, we introduce a small dataset DG
sc of data which

is globally shared between all the local workers and the PS

before starting FL2. Each particle calculates the particle cost

F p
i,t with DG

sc, i.e., Fi(w
p
i,t;D

G
sc). After the PS selects the

particle, the global optimal model parameter broadcasted by

the selected particle can be verified at the PS and all the local

workers. If find a Byzantine attack, the attacker would be

kicked out to promise a Byzantine-resilient FL.

The detailed steps and operations of our CB-DSL is sum-

marized in Algorithm 1.

IV. CONVERGENCE ANALYSIS

In this section, we aim to give the theoretical analysis on

the convergence guarantees of CB-DSL. To this end, we firstly

make some definitions and assumptions for convergence anal-

ysis. Upon these preliminaries, the convergence behaviors of

CB-DSL are evaluated and an upper bound on the convergence

rate is derived.

A. Assumption and Definition

Assumption 1. (Lipschitz continuity, smoothness): For Fi(w)
at node i, the gradient ∇Fi(w) of the loss function Fi(w) is

uniformly Lipschitz continuous with respect to w, that is,

‖∇Fi(wi,t+1)−∇Fi(wi,t)‖ ≤ L‖wi,t+1 −wi,t‖, ∀i, t (7)

where L > 0 is the Lipschitz constant [5].

The following definitions are made to facilitate analysis.

Firstly, we rewrite wp
i,t and wg

t as

wp
i,t = wi,t−1 − vp

i,t, (8)

wg
t = wi,t−1 − vg

t , (9)

where vp
i,t and vg

t denote the optimal local speed and the

optimal global speed at the i-th node in the (t−1)-th iteration.

2For the implementation point of view, the small amount of globally shared
scoring dataset can be either pre-stored in the IoT devices or broadcasted from
the PS to all the local workers.

Algorithm 1 CB-DSL

Initialization:
wp

i,0 = wi,0, F p
i,t, for any i and t;

1: for each round t = 1 : T do
2: At the workers:
3: Iteratively update the local model parameter wi,t and

speed vi,t via (5) and (6);

4: Calculate Fi(wi,t;D
G
sc) with the globally shared dataset

DG
sc and the model parameter wi,t;

5: Set the minimal particle cost F p
i,t =

min{F p
i,t−1, Fi(w

p
i,t;D

G
sc)};

6: if F p
i,t == F p

i,t−1 then
7: Set wp

i,t = wp
i,t−1;

8: else
9: Set wp

i,t = wi,t;

10: end if
11: Send the minimal particle cost F p

i,t to the PS;

12: Upon receiving the index of the selected local worker

ipt , the ipt -th local worker sends wp
i,t to the PS;

13: At the PS:
14: Upon receiving all the F p

i,t’s, set F g
t = min{F p

i,t}Ui and

select the corresponding worker ipt ;

15: Broadcast ipt to local workers;

16: Upon receiving wp
i,t from the ipt -th worker, verify its

minimal particle cost F p
i,t by using DG

sc;

17: If find a attacker, kick it out and repeat line 14 until a

legitimate worker is selected.

18: end for

Then the speed vi,t+1 of (5) can be rewritten as

vi,t+1 = c0vi,t + c1(−vp
i,t + vi,t)

+ c2(−vg
t + vi,t) + α∇Fi(wi,t)

= (c0 + c1 + c2)vi,t − c1v
p
i,t

− c2v
g
t + α∇Fi(wi,t). (10)

We use θi,t, θpi,t, and θgt to denote the angles between

the vectors vi,t and ∇Fi(wi,t), v
p
i,t and ∇Fi(wi,t), v

g
t and

∇Fi(wi,t), for any i and t, respectively. Then we have

cos θi,t �
vi,t∇Fi(wi,t)

T

‖vi,t‖‖∇Fi(wi,t)‖ , ∀i, t, (11)

cos θpi,t �
vp
i,t∇Fi(wi,t)

T

‖vp
i,t‖‖∇Fi(wi,t)‖ , ∀i, t, (12)

cos θgt � vg
t∇Fi(wi,t)

T

‖vg
t ‖‖∇Fi(wi,t)‖ , ∀i, t, (13)

where we assume

q ≤ cos θi,t ≤ q, ∀i, t (14)

qp ≤ cos θpi,t ≤ qp, ∀i, t (15)

qg ≤ cos θgt ≤ qg, ∀i, t. (16)



Then we further assume

u ≤ ‖vi,t‖
‖∇Fi(wi,t)‖ ≤ u, ∀i, t (17)

up ≤ ‖vp
i,t‖

‖∇Fi(wi,t)‖ ≤ up, ∀i, t (18)

ug ≤ ‖vg
t ‖

‖∇Fi(wi,t)‖ ≤ ug, ∀i, t. (19)

B. Convergence

With the assumptions and definitions presented in subsec-

tion IV.A, the convergence bound of CB-DSL is given by the

following Theorem 1.

Theorem 1. For T rounds of communication, the expected
convergence rate at each worker is bounded by

E

�
T�

t=1

‖∇Fi(wi,t)‖2
T

�
≤ F (wi,0)− F (w∗)

TΦE
, ∀i, (20)

where ΦE =
2c0+δc1+δc2

2 qu + α − δc1
2 upqp − δc2

2 ugqg −
2L((c20 + δc1c0 + δc2c0 +

δ2c1
3 +

δ2c2
3 +

δc1δc2
2 )u2 +

δ2c1
3 (up)2 +

δ2c2
3 (ug)2 + α2).

Proof: Please refer to Appendix A.

The result of Theorem 1 implies the following order-wise

convergence rate

E

�
T�

t=1

‖∇Fi(wi,t)‖2
T

�
≤ O(

1

TΦE
). (21)

The inequality of (21) indicates that the convergence is guar-

anteed as the number of communication rounds goes large.

That is, as T → ∞, we have E

��T
t=1

‖∇Fi(wi,t)‖2

T

�
→ 0.

Remark 1. When c0, c1, and c2 are all set to 0, ΦE = α−2Lα2

and CB-DSL degenerates into FedAvg. Thus, when ΦE−(α−
2Lα2) =

2c0+δc1+δc2
2 qu − δc1

2 upqp − δc2
2 ugqg − 2L((c20 +

δc1c0+δc2c0+
δ2c1
3 +

δ2c2
3 +

δc1δc2
2 )u2+

δ2c1
3 (up)2+

δ2c2
3 (ug)2) >

0, CB-DSL converges faster than FedAvg.

Since the datasets over different local workers are non-i.i.d.,

the learning performance varies with the degree of the dataset

heterogeneity. Specifically, the greater the heterogeneity of

datasets, the parameters over different local workers will

become more diverse, e.g., larger range of the values of cos θi,t
among workers. That is, q becomes small and q becomes large.

Intuitively, ΦE becomes smaller as the heterogeneity of non-

i.i.d. datasets increases, which will lead to a worse learning

performance veiled by (20) and (21). We theoretically analyze

the impact of data heterogeneity on the learning performance

of CB-DSL in our journal version [20].

V. SIMULATION RESULT

In this section, we demonstrate that a globally shared dataset

is beneficial to the learning performance of our CB-DSL.

TABLE I: Model architecture of the experiment.

Layer Details

1
Conv2D(1, 6, 5)

ReLU, MaxPool2D(2, 2)

2
Conv2D(6, 16, 5)

ReLU, MaxPool2D(2, 2)

3
FC(16 * 4 * 4, 120)

ReLU

4
FC(120, 84)

ReLU

5 FC(84,10)

A. System and Dataset Setting

To evaluate the performance of our CB-DSL compared to

the benchmark methods, we perform an empirical simulations

by using a handwritten-digit classification task based on the

well-known MNIST dataset that consists of 10 classes ranging

from digit “0” to “9”. In our training procedure, we set a total

number of the local workers to be 50, as the IoT devices in

an edge network. For the i.i.d. setting, 300 distinct training

samples are randomly selected and distributed to each of the

local workers as their local datasets, i.e., K = 300. The

shared scoring dataset consists of 2000 data samples randomly

selected from the population training dataset. In addition, we

set the relevant parameters as c0 = 1, δc1 = 1, and δc2 = 1.

B. Neural Network Setting

As shown in Table I, we use a five-layer CNN as the model

architecture. During training process, we use SGD optimizer

with learning rate α = 0.005 and cross-entropy loss. The batch

size is set to 10.

C. Benchmark Setting

We compare our CB-DSL with FedAvg under different

settings, including: (1) FedAvg without a shared dataset: it is

the standard FedAvg. (2) CB-DSL without a shared dataset:
the local workers use their own scoring dataset to culculate

F p
i,t in CB-DSL. (3) CB-DSL with a shared dataset for local

scoring: the local workers use the shared scoring dataset DG
sc

to culculate F p
i,t in CB-DSL.

D. Result

Fig. 1 shows the simulation results under the three differ-

ent settings, respectively. As shown in Fig. 1, CB-DSL is

superior than FedAvg under the same settings without any

globally shared datasets. A shared scoring dataset can improve

the learning performance for CB-DSL. This is because a

shared scoring dataset can help the PS to select the global

optimum more accurately than that local workers using their

own scoring dataset which however makes the loss function

F (·) only partially observable at local workers. Besides, the

improvement on learning accuracy also indicates that by using



2 4 6 8 10
Communication rounds

0.7

0.75

0.8

0.85

0.9

0.95

T
es

t a
cc

ur
ac

y

Fig. 1: The performance comparison varies with communication rounds.
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Fig. 2: The performance comparison with a Byzantine attacker under the
i.i.d. setting.

the exploration-exploitation mechanism of PSO, our CB-DSL

solutions have an increased chance to jump out of local

optimum traps via the swarm intelligence.

In Fig. 2, we provide the performance comparison in the

presence of the Byzantine attack. It is obvious that even

only one Byzantine attacker can fail FedAvg and CB-DSL

without DG
sc. On the other hand, the CB-DSL with DG

sc can

effectively defend the Byzantine attack, because the globally

shared dataset for scoring DG
sc can help identify and screen

out the Byzantine attacker as explained in Algorithm 1.

In addition, since only one worker is called to send its

model parameters to the PS in CB-DSL while all workers

need to send their model parameters to the PS in FedAvg,

the communication cost in CB-DSL is only 1
U of that in

FedAvg, given the fact that the communication cost for the

transmission of loss values is trivial and thus can be ignored.

Our CB-DSL with DG
sc uses fewer communication rounds than

FedAvg to achieve the same learning accuracy. As a result, our

CB-DSL is communication-efficient with less communication

rounds and less communication overhead per round in practical

applications.

VI. CONCLUSION

This paper studies the holistic integration of FL and P-

SO, named as DSL, which can save communication cost

dramatically. However, the vanilla DSL becomes vulnerable

to Byzantine attacks. Thus, we propose to use a shared

dataset to achieve communication-efficient and Byzantine-

resilient DSL (CB-DSL). We provide theoretical analysis of

the convergence behavior of CB-DSL, which indicates that our

proposed method can achieve better learning performance than

FedAvg. Simulation results verify that our proposed solution

can improve learning performance compared with the standard

FedAvg. Meanwhile, the communication cost of CB-DSL is

much reduced communication cost than standard FedAvg.

Besides, CB-DSL can effectively defend Byzantine attacks.
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APPENDIX A

PROOF OF THEOREM 1

Proof: Because Fi(·) is L-smooth from Assumption 1,

according to [21, Lemma 3.4], we have

Fi(wi,t+1)− Fi(wi,t) ≤ (wi,t+1 −wi,t)∇Fi(wi,t)
T

+
L

2
‖wi,t+1 −wi,t‖2 = −vi,t+1∇Fi(wi,t)

T +
L

2
‖vi,t+1‖2

= −(c0 + c1 + c2)vi,t∇Fi(wi,t)
T + c1v

p
i,t∇Fi(wi,t)

T

+ c2v
g
t∇Fi(wi,t)

T − α‖∇Fi(wi,t)‖2 + L

2
‖vi,t+1‖2. (22)

According to the assumptions of q, qp, qg , q, qp, qg , u, up,

ug , u, up, ug in (14)-(19), for any i and t, we have

uq‖∇Fi(wi,t)‖2 ≤ vi,t∇Fi(wi,t)
T

= ‖vi,t‖‖∇Fi(wi,t)‖ cos θi,t ≤ u q‖∇Fi(wi,t)‖2, (23)

qpup‖∇Fi(wi,t)‖2 ≤ vp
i,t∇Fi(wi,t)

T

= ‖vp
i,t‖‖∇Fi(wi,t)‖ cos θpi,t ≤ upqp‖∇Fi(wi,t)‖2, (24)

qgug‖∇Fi(wi,t)‖2 ≤ vg
t∇Fi(wi,t)

T

= ‖vg
t ‖‖∇Fi(wi,t)‖ cos θgt ≤ ugqg‖∇Fi(wi,t)‖2. (25)



Substituting (23)-(25) to (22), we have

Fi(wi,t+1)− Fi(wi,t) ≤ −(c0 + c1 + c2)qu‖∇Fi(wi,t)‖2
+ c1u

pqp‖∇Fi(wi,t)‖2 + c2u
gqg‖∇Fi(wi,t)‖2

+
L

2
‖vi,t+1‖2 − α‖∇Fi(wi,t)‖2 =

L

2
‖vi,t+1‖2 + (c1u

pqp

+ c2u
gqg − (c0 + c1 + c2)qu− α)‖∇Fi(wi,t)‖2. (26)

Applying the triangle inequality of norms ‖X + Y‖ ≤
‖X‖+‖Y‖, the submultiplicative property of norms ‖XY‖ ≤
‖X‖‖Y‖, and the Jensen’s inequality, we have

‖vi,t+1‖2 = ‖(c0 + c1 + c2)vi,t − c1v
p
i,t

− c2v
g
t + α∇Fi(wi,t)‖2

≤ (‖(c0 + c1 + c2)vi,t‖+ ‖c1vp
i,t‖

+ ‖c2vg
t ‖+ ‖α∇Fi(wi,t)‖)2

≤ 4((c0 + c1 + c2)
2‖vi,t‖2 + c21‖vp

i,t‖2 + c22‖vg
t ‖2

+ α2‖∇Fi(wi,t)‖2). (27)

According to the assumptions of u, up, ug in (17)-(19), for

any i and t, we have

‖vi,t‖ ≤ u‖∇Fi(wi,t)‖, (28)

‖vp
i,t‖ ≤ up‖∇Fi(wi,t)‖, (29)

‖vg
t ‖ ≤ ug‖∇Fi(wi,t)‖. (30)

Substituting (28)-(30) to (27), we have

‖vi,t+1‖2 ≤4((c0u+ c1u+ c2u)
2 + c21(u

p)2

+ c22(u
g)2 + α2)‖∇Fi(wi,t)‖2. (31)

Substituting (31) to (26), we have

Fi(wi,t+1)− Fi(wi,t) ≤ Φ‖∇Fi(wi,t)‖2, (32)

where Φ = c1u
pqp+c2u

gqg−(c0+c1+c2)qu−α+2L((c0u+
c1u+ c2u)

2 + c21(u
p)2 + c22(u

g)2 + α2).

Now extend the expectation over randomness in the tra-

jectory, and perform a telescoping sum of (32) over the T
iterations:

F (wi,0)− F (w∗) ≥ F (wi,0)− E[F (wi,T )]

= E

�
T�

t=1

(F (wi,t−1)− F (wi,t))

�

≥ E

�
T�

t=1

ΦE‖∇Fi(wi,t)‖2
�
, (33)

where ΦE = E[−Φ] = − δc1
2 upqp− δc2

2 ugqg+
2c0+δc1+δc2

2 qu+

α−2L((c20+δc1c0+δc2c0+
δ2c1
3 +

δ2c2
3 +

δc1δc2
2 )u2+

δ2c1
3 (up)2+

δ2c2
3 (ug)2 + α2).

We can rearrange this inequality to yield the rate:

E

�
T�

t=1

‖∇Fi(wi,t)‖2
T

�
≤ F (wi,0)− F (w∗)

TΦE
. (34)
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